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1 Introduction

The study of energy loss of electromagnetic waves passing through matter, in-
terstellar or intergalactic, was suggested to me about in 1965 by L. Rosino and
G. Righini because Rosino had tried, unsuccessfully, to measure the so-called
cosmological redshift by the Lymanα line of hydrogen atom in galactic spectra.
It seems to me that this kind of study can be done by two methods.

The one I’ve been following, for about 35 years, considers diffusion (and
absorbtion) of electromagnetic waves by free or bound electrons in atoms; study
suggested in those years also by L. Pasinetti to interpret spectra of stars like 41
Tauri, by A. Masani to study the spectrum of the Orion Nebula and by other
colleagues.

I calculated cross-sections of diffusion by quantum mechanics and by quan-
tum theory of electromagnetic field.

Cross-section of diffusion of an electromagnetic wave by an electron or an-
other particle is the ratio between the scattered (diffused) wave intensity and
the incident wave intensity, when there is one electron per unit volume, electrons
being on a plane surface of thickness one.

Absorption cross-section of an electromagnetic wave by an electron or an-
other particle is the ratio between (incident wave intensity minus transmitted
wave intensity) and incident wave intensity, minus the total cross-section of the
backward diffusion, when there is one electron per unit volum, electrons being
on a planar surface of thickness one.

Absorption cross-sections are tabulated for a lot of elements by Wiese [1].
Dr. Roberto Monti (Tesre, Bologna), about 20 years ago, explained to me a

second method, mathematically much more simpler, but it requires some ad hoc
hypotheses. It simply consists in introducing in the equations of electromagnetic
waves propagating in interstellar or intergalactic matter, an appropriate index

of refraction n, different from one, an appropriate current
−→
J and an appropriate

charge density Q. The value of these quantities is determined a posteriori by
Monti imposing that the solution of electromagnetic wave equation[

−(
−→
∇)

2
+
(n
c

)2 d2
dt2

]
Aα ∼= Jα (1)
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gives the cosmological red shift and the observed attenuations in intensity; with

Jα ≡ (
−→
J ,Q), Aα 4-potential of electromagnetic wave, α ≡ (1, 2, 3, 4), c constant

of the speed of light in vacuum; (x, y, z) Cartesian coordinates, t time and

−→
∇ ≡

( d
dx
,
d

dy
,
d

dz

)
.

Cosmological red shift is the shift toward longer wavelenghts of the wave-
lenghts of spectral lines observed in the spectra of distant galaxies with respect
to the corresponding laboratory wavelenght; shift that on average is as greater
as smaller is the luminous intensity of the galaxy.

Attenuation is the decreasing in intensity of the luminosity of galaxies when
increases their distance, distance determined by some astronomical method
(variable stars, etc.).

2 The equation of radiative transfer

Coming back to the method I followed, once obtained cross-sections for diffusion
and absorption of electromagnetic radiation by atoms, molecules and corpus-
coles of the interstellar medium, they are included in the equation of radiative
transfer, equation that should be solved with the help of the computer as no-
body has managed to solve it with algebraic or special functions except in simple
cases; in fact we find ourselves solving an integral equation to partial derivatives
containing finite differences.

Now a polar coordinate system xj ≡ (r, θ, φ), j ≡ (1, 2, 3) is introduced, and
a Cartesian coordinate system xj ≡ (x, y, z) superimposed on it; for convenience
of writing it is indicated µ = cos θ and z = rµ, where z is the distance of the light
source along the polar axis, which is directed towards the terrestrial observer.

In fig.1 the main plane of these coordinates (x-y plane) coincides with the
surface of the star or galaxy (taken flat for simplicity) in which the spectrum,
which is then absorbed and diffused, is generated.

In this study I’ve used the equation of transfer of Chandrasekhar [2], for
plane waves, substituting the cross-section of the isotropic diffusion with the
most likely Thomson cross-section and adding only absorption [3]; it is

(√3

2
µ
d

dτ
+ 1
)
I(τ, µ, λ) = −σaDa

σTD
· I(τ, µ, λ) +

3

16π
·

·
∫ 2π

0

dφ
′
∫ π

−π
dµ

′
(1 + cos2 Θ)·

· I[τ, µ
′
, λ− γ(1− cos Θ)], (2)

with
cos Θ = µµ

′
+
√

1− µ2
√

1− µ′2 · cos(φ− φ
′
),

τ =

√
3

2
σT

∫ z

0

Ddz (2a)

(different from that of Chandrasekhar) D number of diffusion centres per unit
volume, Da number of absorbing centres per unit volume, I(τ, µ, λ) electromag-
netic wave intensity, λ electromagnetic wavelength, γ = 2, 4 × 10−12 m is the
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Figure 1 Interstellar medium between the planes (x, y) and (x
′
, y

′
). (Figure of

D. Garegnani)

Compton wavelength of the electron, σa is the total absorbtion cross-section, σT
the total Thomson cross-section for diffusion = 6, 7×10−29m2 in the case of free
electron at rest, for the wavelengths of the visible spectrum under conditions of
linear diffusion; in the non-linear theory the cross-section is proportional to the
wavelenght according to Prof. Mario Verde of the Turin University (1974).

Be

τS =

√
3

2
σT

∫ R

0

Ddz ∼=
√

3

2
σTDR, (2b)

with Z = R the distance crossed by light on the way from the source to the
Earth, the boundary conditions are{

I(0, µ, λ) = Ψ(λ) per µ > 0 (z = 0),

I(τS , µ, λ) = 0 per µ < 0 (z = R),
(3)

where Ψ(λ) is an arbitrary function imposed by the physical conditions.
A solution of this equation, valid for plane waves that propagate along the

direction of z axis, in a Cartesian coordinate system, can be expressed by the
integral of algebraic and special functions given in the formula below, in the
approximation of pure absorption and Thomson scattering, namely

σ =
3

16π
σT (1 + cos2 Θ)
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and
dλ = γ(1− cos Θ)

as specified in equation (2), in presence of Compton effect with electrons at rest
[4, 5] (errata corrige [6]).

Assuming for simplicity of calculation σa = 0, σT = cost and that in the
conditions (3) at the source the profile of spectral lines is a Gaussian of amplitude
W0, i.e. [7]

Ψ(λ) = I0exp
[−(λ− λ0)2

W 2
0

]
=

1

2π

∫ ∞
−∞

I0
√
πW0exp

[−α2W 2
0

4

]
·

· exp[iα(λ− λ0)]dα, (3a)

in the approximation of a single intensity that propagates forward and only one
that turns back; the solution, for the intensity that propagates forward, is given
by

I
(
τ,

1√
3
, λ
)

= Re
{ 1

π

∫ ∞
0

F+(τ, α)exp[iα(λ− λ0)]dα
}
, (4)

with i imaginary unit and

F+(τs, α) =
−2ω
√
πI0W0exp

[
−α2W 2

0

4

]
[P1exp(ωτ∗s )− P2exp(−ωτ∗s )]

, (5)

ω = (C∗2 − C2 − 2KC∗ +K2)1/2,

I0 spectral line intensity at the source, defined in the equation (3a), W0 spectral
line width (∼= 0, 6 FWHM), at the source,

K = 2exp[iαγ],

τ∗s = τsexp[−iαγ] = τs2/K,

P1 = C∗ −K − ω,

P2 = C∗ −K + ω,

C∗ is the complex conjugate of C

C∗ = exp[iαγ/3][J0(2αγ/3)− J2(2αγ/3)/6 + iJ1(2αγ/3)],

where Jn(x) = (−1)nJn(−x) is the Bessel function of the first kind, of order
n, in the variable x [8]. Remember that to get the formulas (4) and (5) the
Gaussian quadrature formulas in the case n = 2 were used [2]∫ 1

−1
f(µ)dµ ∼

n∑
i=1

f(µi)ai ∼ f(µ−1)a−1 + f(µ1)a1, (5a)

with µ±1 = ±1/
√

3, a±1 = 1 and of the remarkable integral [9]∫ 2π

0

exp[itcosx]cos(nx)dx = 2πexp
[ inπ

2

]
Jn(t), n = 0, 1, 2...
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Wo

τ 500 1000 2000 6000 10000 20000 50000 100000
0 0 0 0 0 0 0 0 0
1 37, 6 38, 4 38, 6 38, 7 38, 7 38, 7 38, 7 38, 7
2 108 113, 3 115, 1 115, 6 115, 6 115, 6 115, 6 115, 6
3 200 216, 6 223, 5 225, 8 225, 8 225, 8 225, 8 225, 8
6 553, 5 642 707 745 750 751, 2 752, 5 752, 5
9 1008 1172, 5 1349 1520 1549 1562 1567 1567
12 1590 1795 2089 2495 2591 2649 2668 2670
15 2327 2531 2916 3610 3834 3991 4049 4058
18 3230 3408 3835 4830 5228 5559 5707 5732

Table I

The expression (4) of the diffuse intensity can be studied by the program IN-
OXC.f in Fortran77, obtainable from the author upon request.

From these formulas it can be deduced by that program above, that the
central intensity of the broad lines and hence the intensity of the continuous
spectrum of value I(0, 1/

√
3, λ0) = Ic at the origin, varies in good approximation

by the following formula [3, 7, 10]:

I
(
τs, 1/

√
3, λ

′

0

)
∼
I
(

0, 1√
3
, λ0

)
1 + τs

=
I
(

0, 1√
3
, λ0

)
1 + R

R0

, (6)

λ
′

0 > λ0 + γτs2/
√

3; (6a)

with τs optical thickness of the diffusing medium defined in the formula (2b),
R0 = 2√

3σTD
, D number of diffusion centers per unit volume, as defined above,

with λ′0 wavelenght of a line observed in a distant galaxy (after diffusion) and
λ0 is the corresponding wavelength of a line observed in a laboratory spectrum.

This formula (6), can be obtained for the intensity of the continuous spec-
trum, without numerical calculations, using distributions [8], putting the Fourier
transform of Ψ(λ), defined in eq.(3), equal to Icδ(α), δ(α) is the Dirac delta
function; this is also reported in article [7], where however in eq. (12) there

is erroneously ~Φ0(~x, t) instead of ~Φ0(~x, ω) and then ~Φ0(~x, ω) ∼ cost. instead of
~Φ0(~x, ω) ∼ δ(ω), as has been pointed out by P. Mantegazza of the Observatory
Brera in Merate.

For thinner lines, on the other hand, numerical results indicate a decrease
in intensity much more accentuated with increasing optical thickness τs, as
follows from the numerical results reported in table II, taken from [7]; these
were obtained with the program INOXC.f, which uses double precision.

It is worth noting that the verification of the numerical stability of results
was done partially, only for those optical thickness τs lower than unity that can
interpret the redshift of the lines observed in the sun [4, 11].

In Table I there are the wavelength shifts of spectral lines λ′0 − λ0 in mÅ =
10−13m as a function of the amplitudes W0 given in the first raw, always in mÅ
and of the optical thickness τ (dimensionless) in the first column.
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Wo

τ 500 1000 2000 6000 10000 20000 50000 100000
0 1 1 1 1 1 1 1 1
1 0, 495 0, 499 0, 4995 0, 4995 0, 5 0, 5 0, 5 0, 5
2 0, 319 0, 329 0, 333 0, 333 0, 333 0, 333 0, 333 0, 333
3 0, 2245 0, 242 0, 248 0, 25 0, 25 0, 25 0, 25 0, 25
6 0, 0926 0, 1195 0, 134 0, 142 0, 1425 0, 1425 0, 1428 0, 1428
9 0, 043 0, 0655 0, 0841 0, 0972 0, 099 0, 0995 0, 1 0, 1
12 0, 0221 0, 0378 0, 0548 0, 0718 0, 0748 0, 0763 0, 0768 0, 0769
15 0, 0125 0, 0229 0, 0366 0, 0547 0, 0589 0, 0615 0, 0623 0, 0624
18 0, 0076 0, 0145 0, 0251 0, 0424 0, 0475 0, 051 0, 0523 0, 0525

Table II

In Table II there are the central intensities of spectral lines, assuming 1 = I0
the intensity of the lines before diffusion, as a function of the amplitudes W0

given in the first row, in units of mÅ = 10−13m and in function of the optical
thickness τ (dimensionless) given in the first column; the fourth decimal place
is not significant.

They have been obtained only for not very large values of optical thickness;
they also are not satisfactory because, having assumed a constant σT to integrate
the transfer equations, give a cosmological redshift constant, independent of
the wavelength of the lines observed, in contrast to the measures that give a
redshift proportional to the wavelength.

A discussion of the dependence of the cross section of diffusion σT on the
wavelength will be subject to further communication.

Including now the effect of absorption, the intensity of the lines and of the
continuous spectrum, in the case of plane waves, can be obtained with the
formulas of the publication [3]; the calculations are quite complex, however here
it is assumed as a first approximation σa = cost., independent of λ and the
following formula is obtained, always in the two-flux approximation:

I

(
τs,

1√
3
, λ

′
)

= I

(
0,

1√
3
, λ0

)
·

· exp[−σaDaR]·

·Re
{

1

π

∫ ∞
0

F+(τ, α)exp[iα(λ− λ0)]dα

}
, (7)

I

(
τs,

1√
3
, λ

′

0

)
=
I
(

0, 1√
3
, λ0

)
exp[−σaDaR]

1 + τs
,

λ
′

0 > λ0 + γτs2/
√

3; (6b)

Da is the number of absorption centers per unit volume and λ′0 is the value of
λ

′
for which the maximum intensity of the spectral line is obtained after being

diffused for the interaction with the interstellar matter.
Actually the results of Table I show that λ

′

0 − λ0 increases with progressive
non-linear law with the increase of τs.
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3 Olbers’ paradox and the background radiation

In order to solve the Olbers’ paradox and study the background radiation, the
transfer equation in polar coordinates must be used, in a medium with spherical
symmetry. I have studied this problem in the article [12] with a program of which
perhaps there is a copy at the Department of Astronomy, University of Oxford
while the copy of Brera was unfortunately destroyed. This program is much
more complex than the program INOXC.f but doesn’t differ significantly from it
in the results, apart from factor 1/R2, in the case of only two fluxes of radiation,
for large values of R. In fact, the transfer equation in polar coordinates, in the
above cases, is [2]:(√

3

2
µ
δ

δτ ′′ +
1− µ2

DσT r

δ

δµ
+ 1

)
·

· I
′′
(τ

′′
, µ, λ) = −σaDa

σTD
I

′′
(τ

′′
, µ, λ)+

+
3

16π

∫ 2π

0

dφ
′
∫ π

−π
dµ

′
(1 + cos2Θ)·

· I
′′
[τ

′′
, µ

′
, λ− γ(1− cosΘ)] (8)

with

τ
′′

=

√
3

2
σT

∫ r

0

Ddr.

From eq.(1) for spherically symmetric waves in absence of diffusion and
absorption there are solutions of the type: A(r, θ, φ, t) = f(r, θ, φ, t)/r, where
f(r, θ, φ, t) describes a spherical wave, etc..; therefore, since the intensity I is
obtained from A with Poynting’s formula, it was put tentatively in eq. (8)

I
′′
(τ

′′
, µ, λ) = I

′
(τ

′′
, µ, λ)/r2, (9)

with I
′
(τ

′′
, µ, λ) unknown function.

Remembering also that for the formula (7) of article [12], (in the same ap-
proximation of the Gauss quadrature formulas) indicating I(µi) = Ii, introduc-
ing the discrete values of µ defined in eq.(5a), it follows

δ

δµ
I(µJ) ∼

n∑
i=1

Iidi,j (6)

with di,j constants in this case, therefore from eq.(8) written above, multiplied
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by r2 one gets (√
3

2
µj

δ

δτ ′′ + 1

)
I

′
(τ

′′
, µj , λ)+

1

DσT
[(1− µ2

j )

n∑
i=1

I
′
(τ

′′
, µi, λ)·

· di,j − 2µjI
′(τ

′′
, µj , λ)]/r =

− σaDa

σTD
I

′
(τ

′′
, µj , λ) +

3

(16π)
·

·
∫ 2π

0

dφ
′
∫ π

−π
dµ

′
(1 + cos2Θ)·

· I
′
[τ

′′
, µ

′
, λ− γ(1− cosΘ)]. (8a)

It is evident that for large r eq.(8a) asymptotically coincides with eq.(2) in τ
′′

and therefore I ′ = I; it follows that the central intensity of the wide lines and
hence the intensity of continuous spectrum, due to a flux of radiation in spherical
symmetry, for the formulas (9) and (7), is given in good approximation by the
following formula:

I
′′
(
τs,

1√
3
, λ

′

0

)
∼

∼
I
(

0, 1√
3
, λ0

)
exp[−σaDaR]

R2(1 + τs)
=

=
I
(

0, 1√
3
, λ0

)
exp[−σaDaR]

R2
(

1 + R
R0

) (9a)

λ0
′ > λ0 + γτs2/

√
3; (6b)

with τs optical thickness of the diffusing medium defined in formula (2b),

R0 =
2√

3σTD
,

as previously written, with λ
′

0 wavelength of a line observed in a distant
galaxy and with λ0 wavelength of a line observed in a laboratory spectrum; in
absence of absorption and diffusion (Da = 0, R0 =∞) formula (9a) is that of a
spherical wave and justifies a posteriori the equation (9).

Although the result of this formula is approximated, it allows to deduce that
the visible spectrum, besides decreasing with the increase in distance, also tends
to disappear completely because it moves to another region of the spectrum.
Therefore with these formulas it is possible to solve the so-called Olbers’ paradox
and demonstrate that even if the sky is endless, the brightness of the night sky
is finite, as long as there is intergalactic and interstellar matter.

This paradox says that the average brightness of the night sky, of course far
away from stars and galaxies, that is indicated IK , should be infinite if the sky
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is infinite being given by

IK(λ) = lim
R→∞

(4πRIAmN) =∞, (10)

where N is the average number of stars per unit volume, IAm is the average
intensity of one of them, which can be obtained from the absolute magnitude
and R is the distance from Earth.

Formula (10) can be deduced with the following simple considerations:
− the average intensity that comes per unit area from a source of avarage
intensity IAm at a distance R, in absence of intergalactic medium, is IAm/R

2;
− the average brightness that comes from all the stars at the distance between
R and R+ dR is

dIK(λ) = N4πR2dRIAm/R
2; (11)

it follows that integrating between zero and infinity we have the Olbers’formula
(10).

However, if absorption and diffusion are introduced by the formula (9a),
(where I(0, 1/

√
3, λ0) is replaced with IAm) thus putting in eq. (11)

IAmexp[−σaDaR]/[R2(1 +R/R0)]

instead of IAm/R
2, the following equation is obtained:

dIK(λ) =
N4πdRIAmexp[−σaDaR]

1 +R/R0
. (11a)

From this equation, in the case of pure absorption, neglecting the effects of
diffusion and integrating, the intensity is always finite and is

IK(λ) ∼ NIAm4π/(σaDa). (12)

If there is no absorption, but only diffusion, always for the formula (11a), ne-
glecting the effects of absorption and integrating, one has a logarithmic infinity,
very weak and that is

IK(λ
′
) ∼

∼ IAmN

σTD
lim
R→∞

log

[
1 +

√
3

2
σTDR

]
, (13)

and from eq.(6b) it follows

λ
′

m > λm + γ lim
R→∞

σTDR; (13a)

where λm is an average value of the wavelength of a certain spectral region,
before diffusion in the interstellar matter, and λ

′

m indicates an average value of
the wavelength in the corresponding spectral range observed after the diffusion
of light in intergalactic space. Concluding, there is also in this case a total
extinction of visible light because, for the formula (13a), the spectrum moves in
the extreme infrared, from a given distance forward. With this formula (11a)
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we demonstrate now that according to Eddington’s theory [13] the background
radiation (also known as 3K) originates within 700 pc from Earth, 1 pc =
3, 0856781016 m.

Remember that in Eddington’s theory it is assumed that the interstellar
matter is in thermodynamical equilibrium with the radiation coming from the
stars and radiates like a blackbody. With this simple hypothesis, from the
density of the observed light, the temperature of the interstellar medium and
the brightness of the background radiation are obtained; with the data of that
time Eddington had found for the interstellar matter a temperature of 3,18 K,
close to the temperature of 2,96 K recently measured by Woody et al. [14].

Since from Allen [15] σa ∼ 10−13m2, Da ∼ 0, 5×10−6 granules m−3, placing
these numerical values of the formula (11a), neglecting the effect of diffusion
which is not known and is not given by Allen, it follows that the interstellar
medium, which radiates the 3K, and is at a distance equal to or greater than 1
kpc from us, gives a contribution to the illumination of our night sky less than
0, 21N4πdRIAm, i.e. is marginal and most of the 3K radiation that is observed
is produced within 700 pc from the galactic plane, on which the Earth is roughly
located.

Remembering that the thickness of the galactic disk around the Earth is
about 1 kpc (2 kpc total thickness of the disc) it follows that the 3K is of local
galactic origin. However, it would be advisable to obtain again the values of σa
and Da with a theory that distinguishes between absorption and diffusion.

4 Discussion

Mario Carpino:
Where the infinite background energy ends up at long wavelengths?
Answer:
In part, it goes to the stars that emitted it at short wavelengths, in part

it goes to the intergalactic matter that reemits it as the background radiation
(with the same formulas of Eddington [13] and the observative data of Allen [15],
the temperature of the intergalactic matter can be calculated assuming that it
is in a state of thermodynamic equilibrium with the optical radiation and in a
first approximation I remember to had found, several years ago, that it is less
than 2,7 K) and then maybe it is absorbed for other effects.

It should not be forgotten also that the cross section of Thomson used has
an approximate value and therefore the results are a first approximation.

Luigi Guzzo:
Does the cross section of the diffusion σT vary with the wavelength?
Answer:
Data on cross sections of diffusion of light are scarce, in the case of the free

electron σ, according to the current literature, it is given by Klein-Nishima for-
mula; for the bound electron additional terms must be added due to interaction
with other electrons, with the atomic nucleus, with the other atoms in addition
to non-linear terms which, according to Mario Verde, are proportional to the
wavelenght as in the Breemstrahlung effect.

The editing of this transaltion is due to Michela J. Missana and Natalia Mis-
sana (natalia.missana@gmail.com) and the INOXC.f program is also available
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from Natalia Missana.
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